Условия когда тело принимают за материальную точку

Условия когда тело принимают за материальную точку


Материальная точка: определение, величины, примеры и решение задач

Что такое материальная точка? Какие физические величины связаны с ней, для чего вообще вводится понятие материальной точки? В этой статье мы порассуждаем об этих вопросах, приведем примеры задач, которые связаны с обсуждаемым понятием, а также поговорим о формулах, применяемых для их решения.

Определение

Итак, что же такое материальная точка? Разные источники дают определение в несколько разном литературном стиле. То же самое касается и преподавателей в вузах, колледжах и общеобразовательных учреждениях. Однако, согласно стандарту, материальной точкой называется тело, размерами которого (в сравнении с размерами системы отсчета) можно пренебречь.

Связь с реальными объектами

Казалось бы, как можно принять за материальную точку человека, велосипедиста, автомобиль, корабль и даже самолет, о которых в большинстве случаев идет речь в задачах по физике, когда речь заходит о механике движущегося тела? Давайте смотреть глубже! Для определения координаты движущегося тела в любой момент времени необходимо знать несколько параметров. Это и начальная координата, и скорость движения, и ускорение (если оно, конечно же, имеет место), и время.

Что необходимо для решения задач с материальными точками?

Координатную связь можно найти, только привязавшись к системе координат. Вот такой своеобразной системой координат для автомобиля и другого тела становится наша планета. А в сравнении с ее величиной размерами тела действительно можно пренебречь. Соответственно, если тело мы принимаем за материальную точку, ее координату в двухмерном (трехмерном) пространстве можно и нужно находить как координату геометрической точки.

Движение материальной точки. Задачи

В зависимости от сложности, задачи могут приобретать определенные условия. Соответственно, отталкиваясь от данных нам условий, можно использовать определенные формулы. Иногда, даже имея весь арсенал формул, решить задачу, что называется, "в лоб" все равно не представляется возможным. Поэтому крайне важно не просто знать формулы кинематики, имеющие отношение к материальной точке, но и уметь их использовать. То есть выражать нужную величину, а системы уравнений приравнивать. Вот основные формулы, которые мы будем применять в ходе решения задач:

Задача № 1

Автомобиль, стоящий на стартовой черте, резко начинает движение из неподвижного положения. Узнать, за какое время он разгонится до 20 метров в секунду, если его ускорение составляет 2 метра на секунду в квадрате.

Сразу хочется сказать, что эта задача – практически самое простое, что может ожидать ученика.

Слово “практически” стоит здесь не просто так. Все дело в том, что проще может быть только подставить прямые значения в формулы. Нам же следует сначала выразить время, а затем произвести расчеты. Для решения задачи понадобится формула определения мгновенной скорости (мгновенная скорость - это скорость тела в определенный момент времени). Она имеет следующий вид:

Как мы видим, в левой части уравнения у нас стоит мгновенная скорость. Она нам там абсолютно не нужна. Поэтому делаем простые математические действия: произведение ускорения на время оставляем в правой части, а начальную скорость переносим влево. При этом следует внимательно следить за знаками, поскольку один неправильно оставленный знак может в корне изменить ответ к задаче. Далее немного усложняем выражение, избавляясь от ускорения в правой части: делим на него. В итоге справа у нас должно остаться чистое время, слева - двухуровневое выражение. Все это дело просто меняем местами, чтобы смотрелось привычнее. Остается только подставить величины. Итак, получается, что автомобиль разгонится за 10 секунд. Важно: мы решили задачу, предполагая, что в автомобиль в ней – материальная точка.

Задача № 2

Материальная точка начинает экстренное торможение. Определить, какой была начальная скорость в момент экстренного торможения, если до полной остановки тела прошло 15 секунд. Ускорение принять равным 2 метрам на секунду в квадрате.

Задача, в принципе, достаточно похожа на предыдущую. Но здесь есть пара своих нюансов. Во-первых, нам нужно определить скорость, которую мы обычно называем начальной. То есть в определенный момент начинается отсчет времени и расстояния, пройденного телом. Скорость при этом действительно будет подпадать под данное определение. Второй нюанс – знак ускорения. Напомним, что ускорение - это величина векторная. Следовательно, в зависимости от направления она будет изменять свой знак. Положительное ускорение наблюдается в том случае, если направление скорости тела совпадает с его направлением. Проще говоря, когда тело ускоряется. В противном случае (то есть в нашей ситуации с торможением) ускорение будет отрицательным. И эти два фактора нужно учитывать, чтобы решить данную задачу:

Как и в прошлый раз, сначала выразим необходимую нам величину. Чтобы избежать возни со знаками, начальную скорость оставим там, где она есть. С противоположным знаком переносим в другую часть уравнения произведение ускорения на время. Так как торможение было полным, конечная скорость составляет 0 метров в секунду. Подставляя эти и другие значения, легко находим начальную скорость.

Она будет равна 30 метрам в секунду. Легко заметить, что, зная формулы, справляться с простейшими задачами не так уж и сложно.

Задача № 3

В определенный момент времени диспетчеры начинают слежение за перемещением воздушного объекта. Его скорость в этот момент равняется 180 километрам в час. Через промежуток времени, равный 10 секундам, его скорость увеличивается до 360 километров в час. Определите расстояние, пройденное самолетом за время перелета, если время полета составило 2 часа.

На самом деле в широком понимании данная задача имеет множество нюансов. Например, разгон воздушного судна. Понятно, что по прямолинейной траектории наше тело двигаться бы не могло в принципе. То есть ему нужно взлететь, набрать скорость, а потом уже на определенной высоте какой-то отрезок расстояния двигаться прямолинейно. В расчет не берутся отклонения, а также замедление самолета при посадке. Но это не наше дело в данном случае. Поэтому мы будем решать задачу в рамках школьных знаний, общих сведений о кинематическом движении. Чтобы решить задачу, нам понадобится следующая формула:

Но вот тут нас ожидает загвоздка, о которой мы говорили ранее. Знать формулы недостаточно – их нужно уметь использовать. То есть выводить одну величину при помощи альтернативных формул, находить ее и подставлять. При просмотре начальных сведений, которые имеются в задаче, сразу становится понятно, что решить ее просто так не получится. Об ускорении ничего не сказано, зато есть информация о том, как изменилась скорость за определенный промежуток времени. Значит, ускорение мы можем найти самостоятельно. Берем формулу нахождения мгновенной скорости. Она имеет вид

Ускорение и время оставляем в одной части, а начальную скорость переносим в другую. Затем делением обеих частей на время освобождаем правую часть. Здесь сразу же можно подсчитать ускорение, подставив прямые данные. Но гораздо целесообразнее выражать и дальше. Полученную для ускорения формулу подставляем в основную. Там можно немного сократить переменные: в числителе время дано в квадрате, а в знаменателе – в первой степени. Поэтому от этого знаменателя можно избавиться. Ну а дальше – простая подстановка, поскольку больше выражать ничего не надо. Ответ должен получиться следующий: 440 километров. Ответ будет другим, если переводить величины в другую размерность.

Заключение

Итак, что же мы выяснили в ходе этой статьи?

1) Материальная точка - это тело, размерами которого по сравнению с размерами системы отсчета можно пренебречь.

2) Для решения задач, связанных с материальной точкой, есть несколько формул (приведены в статье).

3) Знак ускорения в этих формулах зависит от параметра движения тела (ускорение или торможение).



условия когда тело принимают за материальную точку, материальная точка движение материальной точки материальная точка это:Что такое материальная точка? Какие физические величины связаны с ней, для чего вообще вводится понятие материальной точки? В этой статье мы порассуждаем об этих вопросах, приведем примеры задач, которые связаны с обсуждаемым понятием, а также поговорим о формулах, применяемых для их решения.

условия когда тело принимают за материальную точку

Условия когда тело принимают за материальную точку 13 8 10