Как найти вероятность в математике егэ

Как найти вероятность в математике егэ


Как решать задачи на вероятность?

Теория вероятности – довольно обширный самостоятельный раздел математики. В школьном курсе теория вероятности рассматривается очень поверхностно, однако в ЕГЭ и ГИА имеются задачи на данную тему. Впрочем, решать задачи школьного курса не так уж сложно (по крайней мере то, что касается арифметических операций) – здесь не нужно считать производные, брать интегралы и решать сложные тригонометрические преобразования – главное, уметь обращаться с простыми числами и дробями.

Теория вероятности – основные термины

Главные термины теории вероятности – испытание, исход и случайное событие. Испытанием в теории вероятности называют эксперимент – подбросить монету, вытянуть карту, провести жеребьевку – все это испытания. Результат испытания, как вы уже догадались, называется исходом.

А что же такое случайность события? В теории вероятности предполагается, что испытание проводится ни один раз и исходов много. Случайным событием называют множество исходов испытания. Например, если вы бросаете монету, может произойти два случайных события – выпадет орел или решка.

Не путайте понятия исход и случайное событие. Исход – это один результат одного испытания. Случайное событие – это множество возможных исходов. Существует, кстати, и такой термин, как невозможное событие. Например, событие "выпало число 8" на стандартном игровом кубике является невозможным.

Как найти вероятность?

Все мы примерно понимаем, что такое вероятность, и довольно часто используем данное слово в своем лексиконе.

Кроме того, мы можем даже делать некоторые выводы относительно вероятности того или иного события, например, если за окном снег, мы с большой вероятностью можем сказать, что сейчас не лето. Однако как выразить данное предположение численно?

Для того чтобы ввести формулу для нахождения вероятности, введем еще одно понятие – благоприятные исход, т. е. исход, который является благоприятным для того или иного события. Определение довольно двусмысленное, конечно, однако по условию задачи всегда понятно, какой из исходов благоприятный.

Например: В классе 25 человек, трое из них Кати. Учитель назначает дежурной Олю, и ей нужен напарник. Какова вероятность того, что напарником станет Катя?

В данном примере благоприятный исход – напарник Катя. Чуть позже мы решим эту задачу. Но сначала введем с помощью дополнительного определения формулу для нахождения вероятности.

  • Р = А/N, где P – вероятность, A – число благоприятных исходов, N – общее количество исходов.

Все школьные задачи крутятся вокруг одной этой формулы, и главная трудность обычно заключается в нахождении исходов. Иногда их найти просто, иногда – не очень.

Как решать задачи на вероятность?

Итак, теперь давайте решим поставленную выше задачу.

Число благоприятных исходов (учитель выберет Катю) равно трем, ведь Кать в классе три, а общих исходов – 24 (25-1, ведь Оля уже выбрана). Тогда вероятность равна: P = 3/24=1/8=0,125. Таким образом, вероятность того, что напарником Оли окажется Катя, составляет 12,5%. Несложно, правда? Давайте разберем кое-что посложней.

Монету бросили два раза, какова вероятность выпадения комбинации: один орел и одна решка?

Итак, считаем общие исходы.

Как могут выпасть монеты – орел/орел, решка/решка, орел/решка, решка/орел? Значит, общее число исходов – 4. Сколько благоприятных исходов? Два – орел/решка и решка/орел. Таким образом, вероятность выпадения комбинации орел/решка равна:

А теперь рассмотрим такую задачу. У Маши в кармане 6 монет: две – номиналом 5 рублей и четыре – номиналом 10 рублей. Маша переложила 3 монеты в другой карман. Какова вероятность того, что 5-рублевые монеты окажутся в разных карманах?

Для простоты обозначим монеты цифрами – 1,2 – пятирублевые монеты, 3,4,5,6 – десятирублевые монеты. Итак, как могут лежать монеты в кармане? Всего есть 20 комбинаций:

  • 123, 124, 125, 126, 134, 135, 136, 145, 146, 156, 234, 235, 236, 245, 246, 256, 345, 346, 356, 456.

На первый взгляд может показаться, что некоторые комбинации пропали, например, 231, однако в нашем случае комбинации 123, 231 и 321 равнозначны.

Теперь считаем, сколько у нас благоприятных исходов. За них берем те комбинации, в которых есть либо цифра 1, либо цифра 2: 134, 135, 136, 145, 146, 156, 234, 235, 236, 245, 246, 256. Их 12. Таким образом, вероятность равна:

Задачи по теории вероятности, представленные здесь, довольно простые, однако не думайте, что теория вероятности – это простой раздел математики. Если вы решите продолжать образование в вузе (за исключением гуманитарных специальностей), у вас обязательно будут пары по высшей математике, на которых вас ознакомят с более сложными терминами данной теории, и задачи там будут куда сложнее.



как решать задачи на вероятность, егэ теория вероятности решение задач:Теория вероятности - самостоятельный раздел математики. Как правило, полноценно теория вероятности рассматривается в вузах, однако с появлением ЕГЭ ее начали поверхностно преподавать в школьном курсе. В этой статье расскажем, как решать задачи по теории вероятности школьного курса.

как найти вероятность в математике егэ

Как найти вероятность в математике егэ 6 7 10